

Catálogo de Padres Dohne Merino

Catálogo Nº 8

Mayo 2025

Convenio INTA - AACM

Catálogo de Padres Dohne Merino 2025

Autoridades

Presidente Instituto Nacional de Tecnología

Agropecuaria (INTA)

Ing. Agr. Nicolas Bronzovich

Presidente Asociación Argentina Criadores de

Merino (AACM)

Ing. Guillermo Paz

Responsables

Comisión Técnica INTA-AACM

Dr. Joaquín Mueller

Ing. Prod. Agrop. Carlos Epper

Comisión Técnica Laboratorios de Lana

Ing. Zoot. Diego Sacchero

Ing. Ernesto González

Ing. Agr. Néstor Franz

Ing. Qco. Sebastián Polacco

Comisión Técnica Provino

Dr. Mauricio Alvarez

Dr. Alejandro Vozzi

Dr. Daniel Maizon

Lic. Gen. Nicolás Giovannini

Antecedentes

En 2008 la Asociación Argentina Criadores de Merino (AACM) reconoce al Dohne Merino como una variedad de Merino en Argentina incorporándolo a los registros genealógicos de dicha Asociacion. En 2010, en la sede de la Asociacion Argentina Criadores de Merino, técnicos y autoridades de dicha Asociación, Criadores y técnicos del INTA establecieron el Programa de Mejora Genética para la raza en Argentina. Dentro de algunas acciones, la AACM en conjunto con el INTA llevaron a cabo diversas capacitaciones para habilitar inspectores para la raza para dar fuerza al programa de mejora genética que se estaba iniciando. Desde 2011 la cabañas comenzaron a recibir evaluaciones PROVINO AVANZADO intracabaña y desde 2017 se publica la primer versión del PROVINO AVANZADO POBLACIONAL donde se analizaron en conjunto informaciones fenotípicas y genealógicas provenientes de 12 cabañas Dohne Merino distribuidas en las provincias de Buenos Aires, Río Negro, Chubut, Santa Cruz y Tierra del Fuego. En este Catálogo se presenta por primera vez en Argentina para ovinos la DEPs (Diferencias Esperadas en la Progenie) para evaluar eficiencia de alimentación denomina Consumo Residual, un hito en los programas de mejora genética de Argentina que buscan identificar reproductores que transmitan eficiencia de alimentación a sus progenies con el impacto positivo esperado en los diferenes ambientes de producción donde se cría la raza.

Introducción

Presentamos en este Catálogo el mérito genético de padres Dohne Merino evaluados utilizando toda la información disponible a la fecha. Se trata de sus propios registros de producción, la producción de su progenie y la producción de otros parientes. Para ello se considera el grado de parentesco entre el animal y esos parientes utilizando la información genealógica disponible en la AACM. En la evaluación se incluyen padres propios de las cabañas como también padres incorporados mediante semen importados o embriones congelados

Planteles evaluados

Tabla 1: Planteles y centrales de prueba que aportan información a la evaluación poblacional.

Plantel	Ubicación	Contacto	Email
CEAT Esquel	Chubut	Martín Villa	villa.martin@inta.gob.ar
CE Potrok Aike	Santa Cruz	Francisco Milicevic	milicevic.francisco@ inta.gob.ar
CE Río Mayo	Chubut	Alejandro Vozzi	vozzi.alejandro@inta.gob.ar
CE Viedma	Río Negro	Mauricio Alvarez	alvarez.juan@inta.gob.ar
Coy Aike	Santa Cruz	Rodrigo García Patella	rodrigo@coyaike.com
El Rauly	Buenos Aires	Gastón Vega	gastonevega@hotmail.com
Ganadera Victoria	Santa Cruz	Mauricio Zampedri	mauriciozampedri@yahoo.com.ar
La Agropecuaria	Buenos Aires	Antonio Cassataro	tcassataro@gmail.com
La Agropeciaria	Buenos Airea	Carlos Yunis	carlos_yunis@hotmail.com
Laguna Colorada	Santa Cruz	Gregory Aldridge	gregoryaldridge58@gmail.com
Las Vegas	Santa Cruz	Santiago Sama	sama.jim@gmail.com
Los Flamencos	Tierra del Fuego	Ivon Roberts	ivon_cac@hotmail
Rincón de los Morros	Santa Cruz	Diego Bernard	bernaddiego@hotmail.com.ar

Mediciones

Los registros de producción habituales en borregas y borregos son el peso de vellón, el peso corporal al destete y a la esquila, los resultados del análisis de una muestra de vellón que incluyen el rinde al lavado y el consiguiente peso de vellón limpio, el promedio del diámetro de fibras, su coeficiente de variación y el factor de confort, la profundidad del ojo de bife y el espesor de grasa dorsal, estos dos últimas mediciones tomadas por ecografías. En algunos casos se registran también datos de la segunda esquila de machos y hembras. Toda la información es usada en las evaluaciones genéticas.

DEPs

El mérito genético de los padres para cada característica es presentado como DEP, Diferencia Esperada en la Progenie. Como dice la expresión, la DEP para una característica como el peso de vellón representa la diferencia en peso de vellón que se espera en la progenie de ese padre respecto a la de otro padre promedio nacido en el año 2005 (año tomado como referencia, ver más abajo). Para ello se asume que esa progenie nació del apareamiento del padre con una madre promedio del año de referencia. Por ejemplo un padre con DEP para peso de vellón de 0,1 kg, tendrá progenie con 100 g más de lana que un padre promedio nacido en el año 2005, si ambos fueran apareados con ovejas similares. Del mismo modo un padre con DEP para diámetro de fibra de -0,4 mic tendrá progenie con lana 1 mic más fina que un padre con DEP para diámetro de fibra de 0,6 mic.

Factores considerados

Para predecir las DEPs, Provino utiliza procedimientos BLUP similares a los usados globalmente en la evaluación genética de animales. Estos procedimientos permiten aislar factores no genéticos de los estrictamente heredables. Un ejemplo puede ilustrar este procedimiento de aislación. Supongamos dos animales cuyos pesos de vellón se diferencian en 1 kg. Los factores que pueden explicar al menos parte de esa diferencia son: la cabaña de nacimiento, el año, el sexo, el tratamiento de alimentación, la edad de la madre, el tipo de nacimiento y la edad a la esquila. BLUP corrige esa diferencia en peso de vellón por todos esos factores, dejando solo la diferencia de pesos de vellón que se hereda.

Herencia y correlaciones

Para estimar las DEPs, BLUP considera el nivel de heredabilidad de cada característica y también considera las correlaciones que hay entre características. Así por ejemplo un padre igual a otro en producción de lana pero con menor diámetro de fibras, tendrá DEP para peso de vellón algo menor porque su finura indica tendencia a tener menos lana. Por el mismo motivo también BLUP permite estimar DEPs para caracteres no medidos.

Índices de selección

Cada padre evaluado tendrá DEPs para varias características y el criador interesado en mejorar alguna en particular podrá elegir entre los padres que mejor DEP tengan para esa característica. Muchas veces interesan padres con una combinación de características positivas. Para eso se calculan índices de selección como la sumatoria de las DEPs ponderadas por su importancia económica. En otras palabras padres con mayor índice tendrán progenie que en la suma de sus diferencias genéticas tienen mayor valor económico. Las ponderaciones económicas pueden variar considerablemente, pero su peso relativo entre características suele variar poco. Anualmente se discuten esas ponderaciones y de acuerdo a las demandas más comunes se calculan y presentan dos índices para la raza Dohne Merino. Un índice, el "i2", que prioriza animales de alto peso de vellón y peso corporal manteniendo la finura actual, y otro índice, el "i1", que pone énfasis en animales de lana más fina. En la Figura 1 se ilustra el énfasis, en términos económicos, que cada índice pone en peso corporal (PCD+PC1+PCA), peso de vellón limpio (PVL) y diámetro de fibras (PDF).

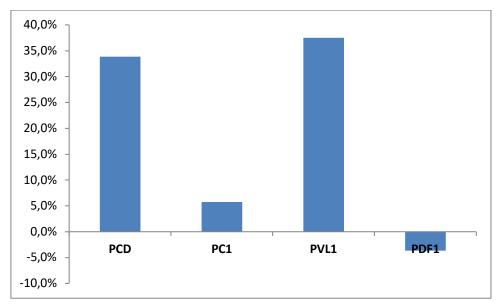


Figura 1: Contribución de cada carácter usado en el índice de selección a la ganancia económica

Los índices apuntan a varias características al mismo tiempo por ello no logran el máximo mejoramiento posible, o potencial, en una característica en particular si solamente se seleccionaría por ella. En la Figura 2 se ilustra la proporción del mejoramiento genético potencial que logran en cada característica los dos índices.

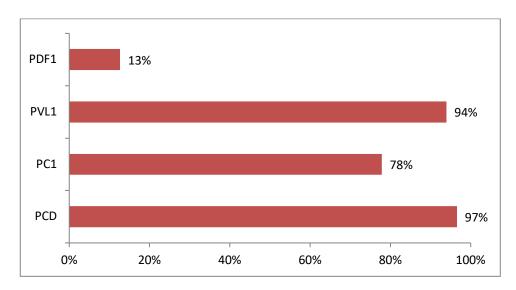


Figura 2: Proporción del mejoramiento potencial que alcanza cada carácter del índice. Por ejemplo 94% del mejoramiento potencial que se obtendría seleccionando solamente por peso de vellón limpio (PVL).

Exactitudes

Las DEPs, y en consecuencia también los índices, se predicen con diferentes exactitudes según la cantidad y calidad de información disponible. Así un padre con datos de 5 hijos tiene DEPs con una exactitud baja y un padre con 25 hijos tiene DEPs con exactitud alta. Un 100% de exactitud equivale a información disponible de muchos (infinitos) hijos. Exactitudes mayores a 80% se consideran altas, exactitudes menores a 60% bajas. Cada DEP tiene su exactitud. En este catálogo se presenta una exactitud promedio de las principales DEP (peso corporal, peso de vellón y diámetro de fibras). Provino calcula las exactitudes usando toda la información disponible y típicamente en la medida que aumenta la información de un plantel aumenta la exactitud de sus DEPs.

Año de referencia

En este catálogo el año de referencia es el año 2005. Esto significa que las DEPs promedio de los animales nacidos en el año 2005 se ajustan = 0,0 para todos los caracteres. Del mismo modo los índices se estandarizan con promedio = 100 y desvío estándar = 10 para el año de referencia. Cabe señalar que los ajustes y la estandarización permiten una mejor interpretación de las DEPs e índices pero no modifican el ordenamiento y diferencias relativas entres los padres. Los promedios de producción en el año de referencia se visualiza en Tabla 2.

Tabla 2: Valores fenotípicos en el año de referencia.

Abreviación	Unidad	Descripción	Promedio año referencia
PCD	kg	Peso corporal al destete	29,4
PC1	kg	Peso corporal a la primera esquila	45,2
PVL1	kg	Peso de vellón limpio	1.9
PDF1	mic	Promedio diámetro de fibras	17,5
CVF1	mic	CV del promedio diámetro de fibras	19,9
POB	mm	Profundidad del Ojo de Bife	24,8
EGD	mm	Espesor de Grasa Dorsal	3,7
CR	Ms/dia	Consumo Residual	0,02

Consanguinidad

La consanguinidad de un padre mide la proporción de genes que provienen de un antecesor común. Por ejemplo un animal nacido de un padre que a su vez fue padre de su madre (apareamiento padre-hija) tiene una consanguinidad del 25%, porque la mitad de los genes de su madre también vienen de su padre. Un alto nivel de consanguinidad alcanzado en pocas generaciones suele provocar taras o depresión de producción, en particular en caracteres reproductivos. En este catálogo se presentan los niveles de consanguinidad estimados con la genealogía disponible.

Criterio de publicación:

Se presentan resultados para padres con progenie evaluada en las últimas 5 camadas, con un mínimo de 10 hijos/as y con al menos 60% de exactitud promedio de las DEPs principales.

Progreso genético:

El catálogo presenta en forma gráfica el progreso genético observado en la población evaluada. Para ello se grafican los valores de cría (VC = DEPs x 2) promedio de las camadas nacidas desde el año 2005. Se puede observar que para el año 2005 las DEPs son = 0,0 y los índices son = 100, ya que se trata del año de referencia. Las Figuras 1, 2 y 3 indican el mérito genético de los animales nacidos en cada año independiente de los efectos ambientales (climáticos o de manejo).

Abreviaciones

Tabla 3: Abreviaciones usadas en el catálogo.

Abreviación	Unidad	Descripción
dep		Diferencia esperada en la progenie en unidad del carácter
vc		Valor de cría (= DEP x 2)
NCD		Número de corderos destetados
PCD	kg	Peso corporal al destete
PC1	kg	Peso corporal a la primera esquila (borrego)
PVL1	kg	Peso de vellón limpio primer esquila
PDF1	mic	Promedio diámetro de fibras primer esquila
ind10		Índice de selección "Afinador"
Ind02		Índice de selección "Lanero"
POB	mm	Profundidad Ojo de Bife, a la primer esquila
EGD	mm	Espesor grasa dorsal, a la primer esquila
an		Año de nacimiento
exa	%	Exactitud promedio
NT		Número total de hijos con datos de PDF1
NC		Número de campos con hijos evaluados

Progreso genético observado

Figura 3: Progreso genético en peso corporal al destete (PCD) y peso corporal a la primer esquila (PC1).

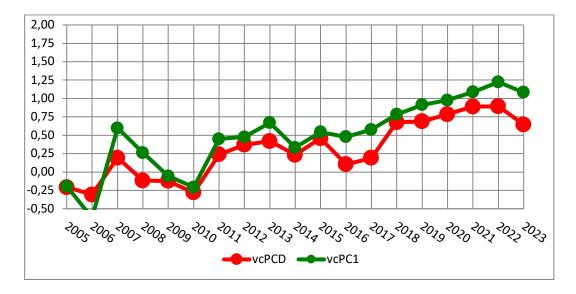


Figura 4: Progreso genético en peso de vellón limpio (PVL1) y promedio de diámetro de fibras (PDF1).

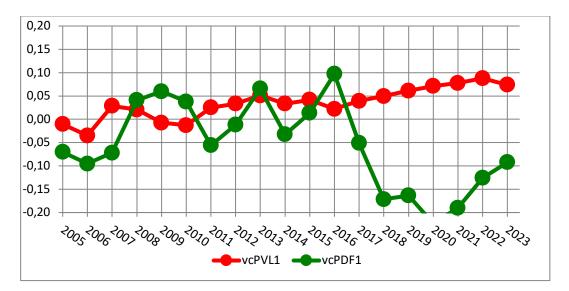


Figura 5: Progreso genético en promedio de área de ojo de bife (POB1) y el espesor de la grasa dorsal EGD1).

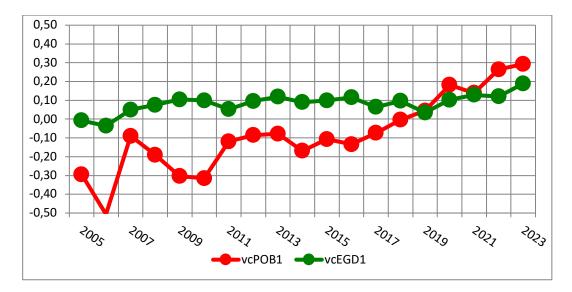


Figura 6: Progreso genético en el índice de selección "Afinador" (ind10) y en el índice de selección "Lanero" (ind02).

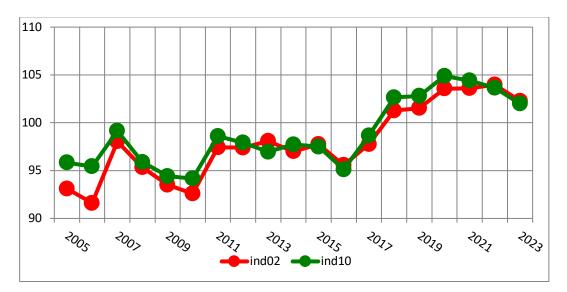
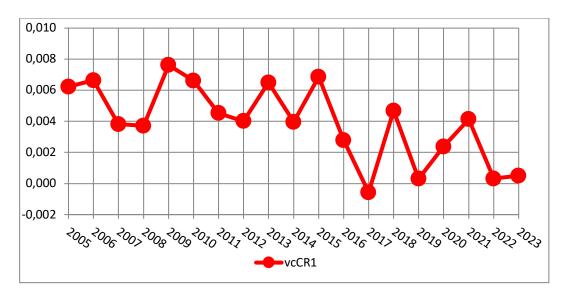



Figura 7: Progreso genético Consumo Residual

En las siguientes Tablas se presentan los mejores 10 padres en diferentes características y el listado completo de padres evaluados a la fecha.

Tabla 4: Mejores 10 padres por orden de DEP peso corporal al destete.

_	Di	ferenc	ia Espei	rada en l	la Proge	nie						
nombre	PCD	PC1	PVL1	PDF1	POB1	EGD1	ind10	ind02	еха	NT	NC	con
CALGA DOHNE 146954	3,61	3,79	0,23	-0,16	1,49	0,34	117	137	84	40	5	0
FAR VALLEY 140055	3,27	3,70	0,04	-0,19	0,26	0,21	113	123	84	38	2	3
ROSEVILLE PARK 140464	3,08	3,14	0,14	-0,17	0,37	-0,02	114	128	89	88	4	3
RINCON MORROS 91	2,88	2,57	0,11	0,39	0,64	0,14	89	108	83	65	2	1
INTA RM 1307	2,73	2,79	0,18	0,26	1,88	0,29	96	116	79	21	2	0
INTA RM 1177	2,63	2,55	0,14	0,25	0,73	0,25	96	113	77	11	2	2
COY AIKE 152	2,56	2,94	0,19	0,31	1,03	0,30	94	115	88	31	3	25
RINCON MORROS 61	2,54	2,15	0,10	0,39	0,81	0,43	89	106	87	61	3	3
ROSEVILLE PARK 140055	2,34	2,11	0,22	-0,50	1,11	0,15	128	138	87	144	4	0
LAS VEGAS 313	2,27	2,81	0,05	-0,24	0,02	0,12	114	120	75	18	1	1

Convenio INTA - AACM

Tabla 5: Mejores 10 padres por orden de DEP peso corporal a 1º esquila.

	I	Diferencia Esperada en la Progenie										
nombre	PCD	PC1	PVL1	PDF1	POB1	EGD1	Ind10	Ind02	еха	NT	NC	con
CALGA DOHNE 146954	3,61	3,79	0,23	-0,16	1,49	0,34	117	137	84	40	5	0
FAR VALLEY 140055	3,27	3,70	0,04	-0,19	0,26	0,21	113	123	84	38	2	3
ROSEVILLE PARK 140464	3,08	3,14	0,14	-0,17	0,37	-0,02	114	128	89	88	4	3
INTA RM 903	2,02	2,98	0,06	-0,13	0,25	0,27	109	117	83	34	3	6
COY AIKE 152	2,56	2,94	0,19	0,31	1,03	0,30	94	115	88	31	3	25
LAS VEGAS 313	2,27	2,81	0,05	-0,24	0,02	0,12	114	120	75	18	1	1
INTA RM 1307	2,73	2,79	0,18	0,26	1,88	0,29	96	116	79	21	2	0
HAMILTON RUN 150347	2,07	2,76	0,13	-0,24	0,20	-0,25	115	124	83	47	1	0
RINCON MORROS 91	2,88	2,57	0,11	0,39	0,64	0,14	89	108	83	65	2	1
INTA RM 1177	2,63	2,55	0,14	0,25	0,73	0,25	96	113	77	11	2	2

Tabla 6: Mejores 10 padres por orden de DEP peso de vellón limpio a 1º esquila.

		Diferen	cia Espe	rada en la	a Progeni	ie						
nombre	PCD	PC1	PVL1	PDF1	POB1	EGD1	ind10	Ind02	exa	NT	NC	con
CERRO CHENQUE 261	1,83	2,21	0,24	0,23	0,38	0,10	97	116	71	13	3	0
CALGA DOHNE 146954	3,61	3,79	0,23	-0,16	1,49	0,34	117	137	84	40	5	0
ROSEVILLE PARK 140055	2,34	2,11	0,22	-0,50	1,11	0,15	128	138	87	144	4	0
COY AIKE 292	1,03	2,05	0,20	0,25	1,77	0,49	94	109	74	48	3	3
COY AIKE 180	0,85	2,12	0,20	0,41	1,61	0,53	87	104	86	102	3	1
LAS VEGAS 225	1,82	2,12	0,19	-0,18	1,08	0,50	114	125	75	17	1	1
COY AIKE 152	2,56	2,94	0,19	0,31	1,03	0,30	94	115	88	31	3	25
INTA RM 1307	2,73	2,79	0,18	0,26	1,88	0,29	96	116	79	21	2	0
HAMILTON RUN 150409	1,68	1,76	0,16	-0,25	0,34	0,07	116	125	78	51	1	8
UARDRY DOHNE 50068	1,22	2,55	0,16	0,09	0,71	0,16	101	113	89	57	4	0

Tabla 7: Mejores 10 padres por orden diámetro de fibra (ordenados por los más afinadores).

	[Diferenci	a Espera	ıda en la	Progeni	e						
nombre	PCD	PC1	PVL1	PDF1	POB1	EGD1	ind10	Ind02	exa	NT	NC	con
HAMILTON RUN 130004	1,24	0,85	0,12	-0,82	0,17	0,09	138	135	93	149	6	0
POTROK AIKE 251	0,52	-0,25	-0,06	-0,81	-0,75	-0,04	133	119	67	11	2	1
LOS FLAMENCOS 153	0,02	0,27	0,13	-0,70	0,17	0,07	141	122	84	36	2	2
CERRO CHENQUE 267	0,74	0,07	0,05	-0,55	0,14	0,04	125	120	66	12	2	0
LOS FLAMENCOS 155	0,56	1,20	0,07	-0,51	0,28	0,08	124	120	79	17	2	1
ROSEVILLE PARK 140055	2,34	2,11	0,22	-0,50	1,11	0,15	128	138	87	144	4	0
LOS FLAMENCOS 165	0,95	1,66	0,14	-0,44	0,67	0,18	122	125	84	33	2	1
INTA RM 575	-0,64	-0,85	0,00	-0,43	-0,48	-0,02	117	106	86	57	3	1
LAS VEGAS 321	0,57	0,37	0,13	-0,43	-0,65	0,34	121	121	66	28	2	1
LAS VEGAS 317	0,88	0,42	0,02	-0,42	-0,29	0,41	119	115	75	13	1	2

Tabla 8: Mejores 10 padres por orden de promedio de ojo de bife.

		Diferen	cia Esper	ada en la	a Progeni	ie						
nombre	PCD	PC1	PVL1	PDF1	POB1	EGD1	Ind10	ind02	exa	NT	NC	con
INTA RM 1307	2,73	2,79	0,18	0,26	1,88	0,29	96	116	79	21	2	0
COY AIKE 292	1,03	2,05	0,20	0,25	1,77	0,49	94	109	74	48	3	3
COY AIKE 180	0,85	2,12	0,20	0,41	1,61	0,53	87	104	86	102	3	1
CALGA DOHNE 146954	3,61	3,79	0,23	-0,16	1,49	0,34	117	137	84	40	5	0
LAS VEGAS 303	0,21	0,93	-0,01	-0,35	1,17	-0,28	115	109	71	28	1	0
ROSEVILLE PARK 140055	2,34	2,11	0,22	-0,50	1,11	0,15	128	138	87	144	4	0
LAS VEGAS 225	1,82	2,12	0,19	-0,18	1,08	0,50	114	125	75	17	1	1
CEAT-INTA 39	1,24	1,25	0,09	-0,11	1,06	0,15	108	113	74	17	2	4
COY AIKE 152	2,56	2,94	0,19	0,31	1,03	0,30	94	115	88	31	3	25
INTA RM 1297	2,04	2,35	0,14	-0,06	1,00	0,39	108	120	81	24	2	7

Tabla 9: Mejores 10 padres por orden de espesor de grasa dorsal.

		Diferen	cia Espe	rada en la	a Progeni	e						
nombre	PCD	PC1	PVL1	PDF1	POB1	EGD1	Ind10	Ind02	exa	NT	NC	con
COY AIKE 180	0,85	2,12	0,20	0,41	1,61	0,53	87	104	86	102	3	1
LAS VEGAS 225	1,82	2,12	0,19	-0,18	1,08	0,50	114	125	75	17	1	1
COY AIKE 292	1,03	2,05	0,20	0,25	1,77	0,49	94	109	74	48	3	3
RINCON MORROS 61	2,54	2,15	0,10	0,39	0,81	0,43	89	106	87	61	3	3
LAS VEGAS 317	0,88	0,42	0,02	-0,42	-0,29	0,41	119	115	75	13	1	2
INTA RM 1297	2,04	2,35	0,14	-0,06	1,00	0,39	108	120	81	24	2	7
COY AIKE 154	0,88	1,19	0,08	-0,24	0,94	0,36	112	114	89	75	3	0
CALGA DOHNE 146954	3,61	3,79	0,23	-0,16	1,49	0,34	117	137	84	40	5	0
LAS VEGAS 321	0,57	0,37	0,13	-0,43	-0,65	0,34	121	121	66	28	2	1
COY AIKE 152	2,56	2,94	0,19	0,31	1,03	0,30	94	115	88	31	3	25

Tabla 10: Mejores 10 padres por orden de índice de selección "Lanero".

		Diferen	cia Espe	rada en la	a Progen	ie						
nombre	PCD	PC1	PVL1	PDF1	POB1	EGD1	ind10	Ind02	exa	NT	NC	con
ROSEVILLE PARK 140055	2,34	2,11	0,22	-0,50	1,11	0,15	128	138	87	144	4	0
CALGA DOHNE 146954	3,61	3,79	0,23	-0,16	1,49	0,34	117	137	84	40	5	0
HAMILTON RUN 130004	1,24	0,85	0,12	-0,82	0,17	0,09	138	135	93	149	6	0
ROSEVILLE PARK 140464	3,08	3,14	0,14	-0,17	0,37	-0,02	114	128	89	88	4	3
LAS VEGAS 225	1,82	2,12	0,19	-0,18	1,08	0,50	114	125	75	17	1	1
LOS FLAMENCOS 165	0,95	1,66	0,14	-0,44	0,67	0,18	122	125	84	33	2	1
HAMILTON RUN 150409	1,68	1,76	0,16	-0,25	0,34	0,07	116	125	78	51	1	8
HAMILTON RUN 150347	2,07	2,76	0,13	-0,24	0,20	-0,25	115	124	83	47	1	0
FAR VALLEY 140055	3,27	3,70	0,04	-0,19	0,26	0,21	113	123	84	38	2	3
LOS FLAMENCOS 153	0,02	0,27	0,13	-0,70	0,17	0,07	141	122	84	36	2	2

Tabla 11: Mejores 10 padres por orden índice de selección "Afinador".

		Diferenc	ia Espera	ada en la	Progeni	e						
nombre	PCD	PC1	PVL1	PDF1	POB1	EGD1	Ind10	Ind02	exa	NT	NC	con
LOS FLAMENCOS 153	0,02	0,27	0,13	-0,70	0,17	0,07	141	122	84	36	2	2
HAMILTON RUN 130004	1,24	0,85	0,12	-0,82	0,17	0,09	138	135	93	149	6	0
POTROK AIKE 251	0,52	-0,25	-0,06	-0,81	-0,75	-0,04	133	119	67	11	2	1
ROSEVILLE PARK 140055	2,34	2,11	0,22	-0,50	1,11	0,15	128	138	87	144	4	0
CERRO CHENQUE 267	0,74	0,07	0,05	-0,55	0,14	0,04	125	120	66	12	2	0
LOS FLAMENCOS 155	0,56	1,20	0,07	-0,51	0,28	0,08	124	120	79	17	2	1
LOS FLAMENCOS 165	0,95	1,66	0,14	-0,44	0,67	0,18	122	125	84	33	2	1
LAS VEGAS 321	0,57	0,37	0,13	-0,43	-0,65	0,34	121	121	66	28	2	1
INTA RM 969	1,29	0,17	0,05	-0,41	-0,28	-0,04	120	119	83	43	2	2
LAS VEGAS 317	0,88	0,42	0,02	-0,42	-0,29	0,41	119	115	75	13	1	2

Tabla 12: Listado de padres Dohne Merino con progenies evaluadas para consumo residual (Solo efecientes)

nombre	rp_padre	fNacimiento	depCR
INTA RM 1201	INTA RM579	2017	-0,0791
INTA RM 1485	TRES ARBOLES132462	2019	-0,0603
CERRO CHENQUE 261	ROSEVILLE PARK140055	2020	-0,0571
UARDRY DOHNE 050068	SD SOUTH AFRICA010510	2005	-0,0234
INTA RM 389	TRES ARBOLES090705	2011	-0,0193
TRES ARBOLES 090669	ROSEVILLE PARK030376	2009	-0,0156
INTA RM 1177	INTA RM579	2017	-0,0155
INTA RM 509	TRES ARBOLES090705	2012	-0,0109
TRES ARBOLES 090705	MACQUARIE DOHNE041267	2009	-0,0097
INTA RM 1743	INTA RM1307	2020	-0,0040
TRES ARBOLES 080503	ROSEVILLE PARK050196	2008	-0,0026
INTA RM 503	RINCON MORROS61	2012	-0,0005
TRES ARBOLES 090711	MACQUARIE DOHNE041267	2009	0,0005

Tabla 13: Listado completo de padres Dohne Merino por orden alfabético

	Diferencia Esperada en la Progenie											
nombre	PCD	PC1	PVL1	PDF1	POB1	EGD1	Ind10	Ind02	еха	NT	NC	con
CEAT-INTA 39	1,24	1,25	0,09	-0,11	1,06	0,15	108	113	74	17	2	4
CEAT-INTA 41	0,47	0,94	0,04	0,08	0,69	0,13	97	100	65	12	2	3
CERRO CHENQUE 251	1,39	1,78	0,10	-0,23	0,79	0,16	113	118	62	12	2	0
CERRO CHENQUE 261	1,83	2,21	0,24	0,23	0,38	0,10	97	116	71	13	3	0
CERRO CHENQUE 267	0,74	0,07	0,05	-0,55	0,14	0,04	125	120	66	12	2	0
COY AIKE 150	1,20	1,51	0,11	-0,25	0,49	0,26	114	119	88	56	3	0
COY AIKE 152	2,56	2,94	0,19	0,31	1,03	0,30	94	115	88	31	3	25
COY AIKE 154	0,88	1,19	0,08	-0,24	0,94	0,36	112	114	89	75	3	0
COY AIKE 180	0,85	2,12	0,20	0,41	1,61	0,53	87	104	86	102	3	1
COY AIKE 184	0,90	1,33	0,10	-0,01	0,98	0,23	103	109	82	16	3	0
COY AIKE 292	1,03	2,05	0,20	0,25	1,77	0,49	94	109	74	48	3	3
FAR VALLEY 140055	3,27	3,70	0,04	-0,19	0,26	0,21	113	123	84	38	2	3
FAR VALLEY 140359	1,83	1,36	0,07	-0,12	0,62	-0,01	108	115	86	43	3	7
HAMILTON RUN 130004	1,24	0,85	0,12	-0,82	0,17	0,09	138	135	93	149	6	0
HAMILTON RUN 150347	2,07	2,76	0,13	-0,24	0,20	-0,25	115	124	83	47	1	0
HAMILTON RUN 150409	1,68	1,76	0,16	-0,25	0,34	0,07	116	125	78	51	1	8
INDALO 177	0,00	-0,13	-0,03	-0,26	-0,22	0,03	110	103	51	24	2	6

Convenio INTA - AACM

	D:	foroncia	Ecnora	ا مو داء	Drogor	aio						
u a u a bu a					Proger		ind10	In dO2	ovo	NIT	NC	
nombre	PCD	PC1	PVL1	PDF1	POB1	EGD1		Ind02	exa	NT	NC	con
INTA RM 1021	1,34	1,29	0,10	-0,13	0,53	0,20	109	115	82	29	2	2
INTA RM 1153	0,27	0,09	0,00	-0,30	0,69	-0,08	113	107	80	20	2	3
INTA RM 1177	2,63	2,55	0,14	0,25	0,73	0,25	96	113	77	11	2	2
INTA RM 1201	1,19	1,80	0,00	0,09	0,56	0,18	97	102	82	37	2	2
INTA RM 1203	1,57	0,72	0,03	-0,21	0,48	0,12	111	113	67	13	2	3
INTA RM 1297	2,04	2,35	0,14	-0,06	1,00	0,39	108	120	81	24	2	7
INTA RM 1307	2,73	2,79	0,18	0,26	1,88	0,29	96	116	79	21	2	0
INTA RM 1483	1,14	0,93	-0,02	-0,09	-0,37	0,16	105	104	75	14	2	2
INTA RM 1485	1,43	1,42	0,01	-0,07	0,75	0,04	105	108	77	14	2	4
INTA RM 1653	0,83	0,75	0,08	-0,27	-0,38	0,10	114	115	70	11	3	3
INTA RM 395	0,45	0,30	0,02	-0,04	-0,87	0,03	102	102	80	22	2	2
INTA RM 487	1,69	1,50	0,05	0,12	0,62	0,21	98	106	78	11	2	5
INTA RM 493	0,47	0,79	0,04	-0,08	-0,38	0,10	104	105	78	14	3	4
INTA RM 575	-0,64	-0,85	0,00	-0,43	-0,48	-0,02	117	106	86	57	3	1
INTA RM 579	1,12	1,68	0,08	-0,05	0,41	0,18	105	110	91	128	4	1
INTA RM 747	0,40	0,71	-0,01	-0,31	-0,14	0,25	113	108	88	87	4	2
INTA RM 761	1,11	1,49	0,08	0,21	0,56	0,03	94	103	83	28	2	7
INTA RM 821	1,69	2,19	0,06	0,11	0,13	0,21	99	108	83	28	2	4
INTA RM 903	2,02	2,13	0,06	-0,13	0,15	0,21	109	117	83	34	3	6
			•		·	·				25	2	2
INTA RM 967	1,38	0,98	0,14	-0,27	-0,43	0,16	116	122	81			
INTA RM 969	1,29	0,17	0,05	-0,41	-0,28	-0,04	120	119	83	43	2	2
JL SOUTH AFRICA 160440	-0,07	0,01	-0,01	-0,29	-0,07	-0,01	111	105	69	14	2	0
LAS VEGAS 129	0,70	-0,73	0,05	-0,27	-0,27	0,17	113	111	79	31	1	1
LAS VEGAS 135	1,80	2,47	-0,10	-0,01	0,59	0,21	101	101	77	25	4	3
LAS VEGAS 205	0,93	1,33	0,01	-0,03	0,55	0,19	102	104	75	11	4	0
LAS VEGAS 225	1,82	2,12	0,19	-0,18	1,08	0,50	114	125	75	17	1	1
LAS VEGAS 303	0,21	0,93	-0,01	-0,35	1,17	-0,28	115	109	71	28	1	0
LAS VEGAS 313	2,27	2,81	0,05	-0,24	0,02	0,12	114	120	75	18	1	1
LAS VEGAS 317	0,88	0,42	0,02	-0,42	-0,29	0,41	119	115	75	13	1	2
LAS VEGAS 321	0,57	0,37	0,13	-0,43	-0,65	0,34	121	121	66	28	2	1
LAS VEGAS 493	1,72	1,21	0,06	0,01	0,04	0,18	103	110	68	10	1	2
LATORO 6	0,70	0,48	0,00	0,02	0,14	0,13	100	100	88	80	3	3
LOS FLAMENCOS 153	0,02	0,27	0,13	-0,70	0,17	0,07	141	122	84	36	2	2
LOS FLAMENCOS 155	0,56	1,20	0,07	-0,51	0,28	0,08	124	120	79	17	2	1
LOS FLAMENCOS 165	0,95	1,66	0,14	-0,44	0,67	0,18	122	125	84	33	2	1
LOS FLAMENCOS 351	1,00	1,76	-0,01	-0,06	0,41	0,07	104	105	82	28	2	0
LOS FLAMENCOS 359	0,38	1,02	-0,01	-0,07	0,18	0,03	103	101	83	35	2	0
LOS FLAMENCOS 361	-0,44	-0,24	-0,02	-0,26	-0,11	-0,01	110	102	83	32	3	0
LOS FLAMENCOS 413	-0,31	0,30	0,07	-0,07	0,01	0,00	104	103	81	30	2	0
MALENA DOHNE 50298	0,40	0,62	0,07	-0,13	0,57	0,00	104	103	77	21	2	0
POTROK AIKE 251		-0,25	-		-0,75		133	119	67	11	2	1
	0,52		-0,06	-0,81		-0,04						
RINCON MORROS 103	-0,55	0,99	0,08	-0,21	0,23	0,20	110	107	75	14	2	5
RINCON MORROS 31	0,58	-0,19	0,01	-0,07	-0,12	0,14	103	103	87	91	3	3
RINCON MORROS 39	0,28	0,76	0,11	-0,09	0,21	0,08	106	109	81	36	2	1
RINCON MORROS 61	2,54	2,15	0,10	0,39	0,81	0,43	89	106	87	61	3	3
RINCON MORROS 87	1,02	1,55	0,06	0,09	0,23	0,19	99	105	77	52	2	1
RINCON MORROS 91	2,88	2,57	0,11	0,39	0,64	0,14	89	108	83	65	2	1
ROSEVILLE PARK 140055	2,34	2,11	0,22	-0,50	1,11	0,15	128	138	87	144	4	0
ROSEVILLE PARK 140464	3,08	3,14	0,14	-0,17	0,37	-0,02	114	128	89	88	4	3
SD SOUTH AFRICA 150015	0,21	0,76	0,07	0,02	0,12	0,02	100	103	77	37	2	0
TRES ARBOLES 132409	0,41	0,79	0,00	-0,40	0,15	0,05	117	112	62	26	2	0

	Diferencia Esperada en la Progenie											
nombre	PCD	PC1	PVL1	PDF1	POB1	EGD1	ind10	Ind02	exa	NT	NC	con
TRES ARBOLES 132456	0,53	1,44	0,11	0,23	0,21	0,08	93	102	79	31	4	0
TRES ARBOLES 132486	0,31	0,24	0,05	-0,01	-0,27	0,01	101	102	63	17	2	0
TRES ARBOLES 30085	0,59	0,09	0,04	-0,05	-0,72	0,08	103	104	78	25	2	3
TRES ARBOLES 80503	-0,22	-0,23	0,02	-0,20	-0,50	0,09	108	103	80	28	2	1
TRES ARBOLES 90669	1,04	0,26	0,11	-0,09	-0,37	-0,02	107	112	80	20	2	2
TRES ARBOLES 90705	0,31	-0,05	0,04	0,04	-0,61	-0,06	99	100	83	25	2	2
TRES ARBOLES 90711	1,68	1,85	0,07	0,17	0,86	0,18	96	106	81	28	2	1
UARDRY DOHNE 10269	0,25	0,75	0,14	0,00	0,03	0,05	102	108	70	12	2	0
UARDRY DOHNE 50068	1,22	2,55	0,16	0,09	0,71	0,16	101	113	89	57	4	0
UARDRY DOHNE 90366	-0,50	-0,49	0,03	-0,40	0,31	0,08	116	108	88	62	5	0

Percentiles

En una evaluación genética poblacional como lo es ProOvino Avanzado se obtiene el mérito genético de los animales participantes en forma de dep's. Los dep's se encuentran dentro de un rango de valores, propio de la característica evaluada. Este rango es útil, como una primera aproximación, para precisar la posición de un determinado animal (en términos de porcentaje) respecto al resto de animales de la población. En la tabla, se presentan los porcentajes de animales (carneros, ovejas, borregas y borregos) por encima o por debajo de determinados valores de dep, también conocidos como **Percentiles**, para todas las características evaluadas.

A modo de ejemplo, cuando un usuario de ProOvino Avanzado busca un carnero más lanero, elegirá uno con dep positivo para Peso de Vellón. Con la ayuda de la tabla puede ser más preciso. Ahora, no sólo podrá seleccionar un carnero con dep positivo, sino que se ubique por ejemplo, dentro del 5% más positivo de la población. Por el contrario, si desea seleccionar carneros que afinen, se deberá tener mayor precaución ya que los animales mejor valorados serán los más negativos, ubicados al otro extremo de la tabla. De este modo, para cada característica, se pueden buscar animales extremos o moderados en su valoración genética.

Percentil	DEPPCD	DEPPC1	DEPPVL1	DEPPDF1	DEPPOB1	DEPEGD1	I10	102
0%	2,71	4,11	0,27	-0,68	2,60	3,65	130	147
1%	2,13	3,26	0,22	-0,59	1,67	0,49	127	133
5%	1,70	2,30	0,16	-0,41	1,24	0,36	120	123
10%	1,41	1,76	0,13	-0,32	1,03	0,29	117	118
20%	0,94	1,26	0,09	-0,22	0,52	0,20	111	112
30%	0,63	0,83	0,07	-0,14	0,23	0,13	107	108
40%	0,42	0,55	0,04	-0,09	0,09	0,07	104	104
50%	0,33	0,44	0,03	-0,06	0,00	0,04	102	101
60%	0,14	0,26	0,01	-0,03	-0,07	0,03	99	99
70%	0,00	0,22	0,00	0,04	-0,11	0,00	96	96
80%	-0,14	-0,10	-0,01	0,12	-0,23	0,00	94	94
90%	-0,74	-0,52	-0,05	0,21	-0,32	-0,02	89	88
95%	-1,18	-0,93	-0,07	0,32	-0,47	-0,06	84	81
99%	-1,73	-1,75	-0,12	0,66	-0,86	-0,26	71	66
100%	-2,68	-2,96	-0,14	1,34	-1,37	-0,37	50	56